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We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its
quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is
squashed between two distinct non-Gaussian fixed points: the classical fixed point dominated by thermal
fluctuations and the quantum critical fixed point dominated by zero-point quantum fluctuations. Truncating an
exact flow equation for the effective action, we derive a set of renormalization group equations and analyze
how the interplay of quantum and thermal fluctuations, both non-Gaussian in nature, influences the shape of the
phase boundary and the region in the phase diagram where critical fluctuations occur. The solution of the flow
equations makes this interplay transparent: we detect finite temperature crossovers by computing critical
exponents and we confirm that the power law describing the finite temperature phase boundary as a function of
control parameter is given by the correlation length exponent at zero temperature as predicted in an
�-expansion with �=1 by Sachdev �Phys. Rev. B 55, 142 �1997��.
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I. INTRODUCTION

The quantum Ising model serves as a prime textbook ex-
ample to illustrate fundamental aspects of quantum phase
transitions.1–5 The quantum Ising Hamiltonian has the form,

HQI = − J�
�ij�

�i
z� j

z − h�
i

�i
x, �1�

where J is a ferromagnetic exchange coupling, the sum �ij�
runs over pairs of nearest neighbor sites, and the quantum
degrees of freedom are represented by the operators �i

z,x,
which reside on a site i of a hypercubic lattice in d dimen-
sions and reduce to the Pauli matrices in the basis where �z

is diagonal.2 The parameter h is the external transverse mag-
netic field which induces quantum-mechanical tunneling
events that flip the orientation of the Ising spins. The relevant

parameter of Eq. �1� is the ratio �̂�J /h. For large �̂ the
ground state is ferromagnetically ordered and spontaneously

breaks the discrete Z2 Ising symmetry while for smaller �̂ the
spins in the ground state remain disordered. The two phases
are separated by a second order quantum phase transition at a

critical �̂c. At finite temperature the formation of spin order is

hindered and the �̂ at which the order sets in is increased

leading to a line of second order phase transitions Tc��̂� that

terminates at the quantum critical point �QCP� Tc��̂c�=0.
Since the phase diagram of the quantum Ising model exhibits
many generic features of physical systems in vicinity of their
QCPs, it is important to understand it in detail.

Various finite temperature properties of compounds mod-
eled by the quantum Ising model were measured experimen-
tally in three dimensions.6 Theoretically, the corresponding
phase diagrams were investigated by Sachdev within analyti-
cal approaches.2,7 These rely on the effective continuum field
theory to which an expansion around the upper critical di-
mension is applied. In two dimensions, the quantum Ising
model describes a strongly coupled lattice system. Its ground
state was recently analyzed numerically with new

algorithms.8,9 The perturbative renormalization group �RG�
approach by Hertz10 and Millis11 does not cover this case as
the QCP is associated with a non-Gaussian fixed point there-
fore invalidating the—in other cases successful—expansion
around a Gaussian fixed point.11

In this note, we extend our recent RG approach12 to QCPs
associated with non-Gaussian fixed points. We present an
analysis addressing the quantum Ising model in two spatial
dimensions near the QCP with flow equations derived within
the functional renormalization group framework.13 This set
of coupled differential equations is valid at zero and finite
temperature and is derived from a truncation of the exact
functional flow equation for the scale-dependent effective ac-
tion ����, with � a scalar-valued bosonic field obtained from
coarse-graining Ising spins over a neighborhood of their lat-
tice sites. The solution of this flow equation as a function of
the continuous cutoff scale � yields the renormalized effec-
tive action from which all physical properties can be ex-
tracted. Already in simple truncations, this framework yields
the critical properties of O�N�-symmetric field theories be-
low the upper critical dimension,13 including the Ising case
O�1�.14

II. ACTION

The scale-dependent action parametrizing the continuum
field theory for the low-energy physics of the quantum Ising
model,2,7 which we will apply in this note is given by

�QI��� =
T

2 �
�n

	 ddp

�2	�d�pZ��n
2 + p2��−p + U��� . �2�

Here, p= ��n ,p� and �n=2	nT with n integer are bosonic
Matsubara frequencies, Z is a �-dependent renormalization
factor multiplying the momentum dependence of the propa-
gator, and U��� is the effective potential specified below. For
simplicity, the renormalization factors corresponding to the
p2 and �n

2 terms are taken to be equal here as the two Z�s
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would have the same singular behavior within our RG treat-
ment. As we checked by an explicit calculation, considering
two different Z factors for these two terms has no impact on
the results of this paper. Technically, this stems from the fact
that the flow equations for the two Z�s both come from sec-
ond derivatives of the same expression corresponding to the
one-loop diagram which renormalizes the propagator �see
below for further details�. The action is regularized in the
ultraviolet by restricting momenta to 
p

�UV. By virtue of
the quadratic frequency dependence, the dynamical exponent
z is equal to unity. The effective dimensionality at zero tem-
perature D=d+z=3 is below the upper critical dimension
D+=4. We approach the phase boundary and the QCP from
the symmetry-broken region in the phase diagram and we
therefore assume a potential U��� with a minimum at a non-
zero order parameter �0:

U��� =
u

4!
	

0

1/T

d�	 ddx��2 − �0
2�2

= 	
0

1/T

d�	 ddx�u
��4

4!
+ �3u�

��3

3!
+ �

��2

2!
 , �3�

where � and �� are functions of x and � with �=�0+��.

The parameter �=
u�0

2

3 is related to the ratio of transverse field

to exchange coupling �̂�J /h in the original Hamiltonian,
Eq. �1�, and controls the distance from criticality. The three-
point vertex �3u� generates an anomalous dimension of the
order parameter field already at one-loop level.

III. FLOW EQUATIONS

The flow equations are obtained along the lines given in
Ref. 12. The recipe is the following: after endowing the
propagator with a suitably chosen cutoff function �also given
in Ref. 12� that implements the �-dependence and regular-
izes the infrared singularity of the massless propagator at
criticality, one executes a cutoff derivative on the analytic
expressions corresponding to all one-loop one-particle irre-
ducible Feynman diagrams for the parameters u, �0. The
flow of Z is obtained by taking the second derivative of the
equation describing the flow of the propagator with respect
to momentum. After utilization of the variables

�̃ =
�0

2Zd

2KdT�d−2 , ũ =
u2KdT

dZ2�4−d , �4�

where Kd is defined via � ddk
�2	�d =Kd�d
k

k
d−1, as well as the

anomalous dimension  and rescaled temperature T̃

 = −
d log Z

d log �
, T̃ =

2	T

�
, �5�

we can write the flow equations as

dũ

d log �
= �d − 4 + 2�ũ + 3ũ2

�� 1

�1 + 2ũ�̃
3 �3 + 2�

n=1

�
1

��nT̃�2 + 1 + 2ũ�̃
3 �3

d�̃

d log �
= �2 − d − ��̃ +

3

2� 1

�1 + 2ũ�̃
3 �2

+ 2�
n=1

�
1

��nT̃�2 + 1 + 2ũ�̃
3 �2 . �6�

The anomalous dimension is determined by

 = 2ũ2�̃� 1

�1 + 2ũ�̃
3 �4 −

2

�d + 2��1 + 2ũ�̃
3 �5

+ 2�
n=1

�
1

��nT̃�2 + 1 + 2ũ�̃
3 �4 −

2

�d + 2���nT̃�2 + 1 + 2ũ�̃
3 �5 .

�7�

The Matsubara sums can be performed analytically yielding
hyperbolic functions but the expressions do not deliver any
additional insights here. There are three distinct contributions
in the flow equations Eq. �6�: the Gaussian terms linear in �̃,
ũ, the classical terms corresponding to the zeroth Matsubara
frequency, and the quantum terms summing over the nonzero
Matsubara frequencies that become crucial at low tempera-
tures. The zero temperature limit of Eq. �6� results in modi-
fied variables �̃ and ũ, which then do not depend on T and
are rescaled by different powers of �, but is fully accessible
within our framework.12,15 A strength of the present approach
lies in the ability to integrate out classical and quantum
fluctuations—both non-Gaussian in nature, including the
anomalous dimension  of Eq. �7�.12

IV. RESULTS

The numerical solution of the coupled flow Eqs. �6� and
�7� at T=0 gives access to the critical behavior at the QCP
while for T�0 the classical critical behavior along the phase
boundary is obtained. As initial conditions for the upper cut-
off, the interaction coupling, and the momentum renormal-
ization factor we set �UV=1, u=1, and Z=1. By choosing
the initial condition of �̃ or �, we can tune to the critical state
characterized by � vanishing at the end of the flow, that is,
for �→0.12 We employ a logarithmic representation of the
cutoff parameter, s=−log�� /�UV�, such that small s corre-
sponds to the high-energy regime and large s to the infrared,
low-energy regime.

In Fig. 1, the zero temperature flow at the QCP is juxta-
posed with finite temperature flows at the phase boundary.
Both, the finite-T and the T=0 theory find a description in
terms of two distinct non-Gaussian fixed points indicated by
two distinct scaling plateaus with finite ũ and . The anoma-
lous dimension directly at the QCP �black dots in Fig. 1�c��
comes out as QCP�0.1 to be compared with the accurate
value of the classical Ising universality class in three dimen-
sions �3D�:16 �0.04. The correlation length exponent at
T=0 comes out as �=0.6 in our calculation—coincidentally
close to the accepted value �=0.63.16 We calculate � by first
computing the susceptibility exponent � and then using the
scaling relation �=��2−�.17 The susceptibility corresponds
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to the renormalized value of ��→0
−1 at the end of the flow. The

exponent � is obtained as the slope of the graph of ��→0
−1

versus the distance from the QCP ��−�c��=�UV
in double

logarithmic coordinates. At the finite temperature fixed point,

�0.5, to be compared with the exact value from the On-
sager solution of the classical Ising model in two dimension
=1 /4.17 More elaborate truncations lead to improved accu-
racy in the critical exponents.14,18,19

From the finite-temperature flows in Fig. 1�a�, we can
deduce the Ginzburg-scale, where ũ starts to become sizable,
to vary with temperature as �G�Tc

1/�4−d�, with d=2, thereby
fitting the formula valid for d+z�4.12 Juxtaposing the Ginz-
burg scale with the quantum-to-classical crossover scale

which follows from the definition of T̃ in Eq. �5�: �cl�T1/z

with z=1, we obtain

�G � T1/2 � �cl � T , �8�

which indicates that non-Gaussian fluctuations become im-
portant at energy scales above the quantum-to-classical
crossover. For the cases where the QCP is described by a
Gaussian fixed point,12 this relation is inverted �G
�cl,
while �G��cl for d=2, z=2.

Another important difference between the QCP being
Gaussian or non-Gaussian is that in the latter case �G does
not vanish as T→0. In the �T , ũ�-plane there is a jump from
the 2D-Ising fixed point at finite temperature to the 3D-Ising
fixed point at T=0 with a finite �G

T=0 as shown by the zero-
temperature flow in Fig. 1�a�.

The phase diagram in the symmetry-broken phase at low
but finite temperatures can be portioned into three regimes,
characterized by exponents belonging to different universal-
ity classes as shown for the order parameter exponent � in
Fig. 2 and for the anomalous dimension  as a function of
scale in Fig. 3. The regimes and their relative size in the
phase diagram can be detected by computing � when ap-
proaching the phase boundary from the symmetry-broken
phase: �0������−�c��. The results in double logarithmic
coordinates, so that the slope corresponds to the exponent �,
are exhibited in Fig. 2.

In the immediate vicinity of the phase boundary, �
�0.13, which comes out close to the exact value �=1 /8
=0.125 from the Onsager solution of the classical 2D-Ising
model.17 This reflects the fact that at any finite, even if small,
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FIG. 1. �Color online� Flows for the quantum Ising model in
d=2 as a function of logarithmic cutoff-scale s=−log�� /�UV� for
various temperatures and at T=0. We set �UV=1. The infrared �ul-
traviolet� is to the right �left� of the graphs. The values of the clas-
sical fixed point, attained by all finite-T flows, and the quantum
critical fixed point, attained by the zero-temperature flow, are
marked on the vertical axis. �a�: Flows of the quartic self-interaction
ũ. �b�: Corresponding flows of the rescaled minimum of the effec-
tive potential �̃. �c�: Flows of the anomalous dimension .
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FIG. 2. �Color online� Emergence of three different regimes in
the phase diagram as illustrated with three different values of the
order parameter exponent � upon approaching the QCP at very low
temperatures. Here, we set T=1.7�10−5.
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temperature the asymptotic properties of the system are de-
termined by strong classical, non-Gaussian fluctuations. This
asymptotic behavior does not survive the limit T→0, as the
classical fluctuations are replaced by zero-point quantum
fluctuations. Further away from the phase boundary, in the
center of Fig. 2, ��0.29, which comes out close to the value
of the 3D-Ising universality class �=0.33.16 This regime per-
sists at zero temperature and reflects the non-Gaussian char-
acter of the QCP. Further away from the phase boundary, to
the right of Fig. 2, mean-field behavior sets in with ��0.5.

The same crossover between the three regimes manifests
itself also in the scaling behavior of the propagator repre-
sented by the anomalous dimension in Fig. 3. In the high-
energy regime of the flow �0�s�2�,  is close to zero
reflecting mean-field behavior. At lower energies, between
s�5 and s�12, the flow is governed by the quantum critical
fixed point which belongs to the 3D-Ising universality class
with a scaling plateau at �0.1. Asymptotically in the in-
frared �15�s�18�, classical scaling of the 2D-Ising univer-
sality class sets in with  being attracted toward �0.5.
Upon increasing T, the size of the classical 2D-Ising plateau
increases and the size of the quantum 3D-Ising plateau
decreases.

By identifying the finite temperature phase boundary with
the critical coordinates in the �� ,T�-plane where the non-
Gaussian scaling plateaus in Fig. 1 occur,12 we have com-
puted the critical temperature as a function of the control
parameter and obtained the power law

Tc � �� − �c�� �9�

with �=0.6 the correlation length exponent at zero tempera-
ture as determined above. Sachdev obtained the same result

for Tc expanding around the upper critical dimension in �
=3−d and then extrapolating the result to d=2.7 Although
yielding the correct result, at least the formal justification of
setting �=1 without capturing the anomalous dimension and
the associated non-Gaussian behavior in the strong-coupling
region of the phase diagram is not immediately clear to us.

In Fig. 4, we schematically plot the Tc-line, the crossover
line from 3D-Ising to 2D-Ising behavior, and the Ginzburg
temperature �at which the interaction ũ becomes sizable�.
Relying on the Ginzburg-line as a proxy for the phase bound-
ary gives a different location of the QCP.

V. CONCLUSION

In conclusion, we have extended our recent RG frame-
work for quantum-critical systems with discrete
symmetry-breaking12 to systems where the QCP is associated
with a non-Gaussian fixed point. As a stress test, we per-
formed an RG analysis of the low but finite temperature re-
gime of the two-dimensional quantum Ising model where the
system is squashed between the strong-coupling fixed points
of �i� the QCP and �ii� the finite temperature phase boundary.

Interesting avenues for future investigation include the as
yet unresolved interplay of quantum and thermal fluctuations
in the vicinity of a QCP where the finite temperature phase
transitions are of the Kosterlitz-Thouless type.
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FIG. 3. �Color online� Crossover behavior of the anomalous
dimension as a function of scale s=−log�� /�UV� for T=1�10−6.
Upon increasing T, this curve will continuously deform toward the
shape of the blue dashed-dotted line in Fig. 1�c�.

FIG. 4. �Color online� Schematic plot of the Ginzburg-line
�dashed, blue�, the crossover line �dotted, black� from 3D-Ising to
2D-Ising behavior, and the true Tc-line �straight, red� for the quan-
tum Ising model in d=2. Units are arbitrary and will depend on the
microscopic details of the specific system under investigation. The
symmetry-broken phase is the area to the right of the Tc-line.
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